Ho:YAG

Ho ion is used as active ion, the pump wavelength is 1.9 μ m, and the output wavelength is 2.05 μ m unpolarized laser. Due to the excellent physical and chemical properties of the YAG matrix, it can withstand high thermal loads, so it can output 2.05 μ m lasers with high power and high repetition frequency. It is an important pump source laser crystal for mid-wave infrared lasers.

Main features:

Unpolarized laser output high thermal conductivity Strong thermal shock resistance Suitable for 1.9µm laser pumping

Material properties:

Crystal structure	Cubic system
Lattice constant	12.01 Å
Melting point	1970°C
Moh's hardness	8.5
Density	4.56±0.04g/ ^{cm3}
Specific heat	0.59J/g.cm ³ @0-20°C
Elastic Modulus	310GPa
Young's modulus	3.17×10 ⁴ Kg/mm2
Poisson's ratio	0.3
Tensile strength	0.13~0.26GPa
Coefficient of thermal expansion	[100] Direction: 8.2×10^{-6} /K@ $0 \sim 250^{\circ}$ C
	[110] Direction: 7.7×10 ⁻⁶ /K@0~250°C
	[111] Direction: 7.8×10 ⁻⁶ /K@0~250°C
Thermal conductivity	14W/m/K@20°C
	10.5W/m/K@100°C
Thermo-optic coefficient (dn/dT)	$dn/dT = 7.3 \times 10^{-6} / K$
Thermal shock resistance	790W/m
Solubility	Insoluble in water, slightly soluble in common acids

Product parameters:

Doping concentration	0~3at% Can be customized according to customer requirements
Orientation	<111>±5°
Wavefront distortion	≤0.25λ/25mm @632.8nm
Size	Diameter: 3~15mm, Length: 5~180mm , can be customized
Dimensional tolerance	Diameter: +0.00/-0.05mm, Length: ± 0.5mm
Cylindrical processing	Grinding or Polishing
Parallelism of end faces	≤10"
Perpendicularity between end face and rod axis	≤5′
Flatness of end face	≤λ/10@632.8nm
Surface Quality	10-5 (MIL-O-13830A)
Chamfer	0.15±0.05mm
AR Coating Reflectance	≤0.25%